Answer:
Option (3)
Explanation:
Equations of the different conic sections are,
Circle → x² + y² = r²
Ellipse →
![(x^2)/(a^2)+(y^2)/(b^2)=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/9hbgz6tsmh7lo1cfgdxq0soa6g246zfsak.png)
Parabola → y = ax²
Hyperbola →
![(x^2)/(a^2)-(y^2)/(b^2)=1](https://img.qammunity.org/2021/formulas/mathematics/college/yk0233k4qbed1ko34p1onj9ximr52vs09s.png)
Given equation in the question is,
![y=(1)/(8)x^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/63s8o8vmunwg94uy8vu2p6n6ll8yl1380s.png)
Which matches to the equation of a parabola,
y = ax²
Therefore, equation fits to a parabola.
Option (3) will be the answer.