73.9k views
2 votes
Use the half-angle identity to determine tan105

Use the half-angle identity to determine tan105-example-1
User Spedge
by
6.2k points

1 Answer

7 votes

Answer:

A

Explanation:


tan 2x=(2tan x)/(1-tan^2x) \\put x=105\\2x=105*2=210\\tan ~2x=tan~210=tan(180+30)=tan ~30=(1)/(√(3)) \\(1)/(√(3) ) =(2~tan~x)/(1-tan^2x) \\cross~multiply \\2√(3)~tan~x=1-tan^2~x\\tan^2x+2√(3)~tan~x-1=0\\tan~x=\frac{-2√(3) \pm \sqrt{(2√(3))^2-4*1*(-1)} }{2*1} \\=(-2√(3) \pm √(12+4) )/(2) \\=(-2 √(3) \pm 4)/(2)\\=-√(3)} \pm~2\\

as tan 105 lies in second quadrant,so it is negative.

tan 105=-√3 -2=-√(-√3-2)²=-√[3+4+2(-√3)(-2)]=-√[7+4√3]

User Pskink
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.