223k views
9 votes
Solve the logarithmic equation. Show steps

Solve the logarithmic equation. Show steps-example-1

1 Answer

11 votes


\begin{array}{llll} \textit{Logarithm of rationals} \\\\ \log_a\left( (x)/(y)\right)\implies \log_a(x)-\log_a(y) \end{array}~\hfill \begin{array}{llll} \textit{Logarithm Cancellation Rules} \\\\ log_a a^x = x\qquad \qquad \underset{\stackrel{\uparrow }{\textit{let's use this one}}}{a^(log_a x)=x} \end{array} \\\\[-0.35em] ~\dotfill


\log_4(x+10)-\log_4(x-2)=\log_4(x)\implies \log_4\left( \cfrac{x+10}{x-2} \right)=\log_4(x) \\\\\\ \stackrel{\textit{exponentializing both sides}}{4^{\log_4\left( (x+10)/(x-2) \right)}=4^(\log_4(x))}\implies \cfrac{x+10}{x-2}=x\implies x+10=x^2-2x \\\\\\ 10=x^2-3x\implies 0=x^2-3x-10 \\\\\\ 0=(x-5)(x+2)\implies x= \begin{cases} 5~~\checkmark\\ -2 \end{cases}

notice, -2 is a valid value for the quadratic, however, the argument value for a logarithm can never 0 or less, it has to be always greater than 0, so for the logarithmic expression with (x-2), using x = -2 will give us a negative value, so -2 is no dice.

User Citronex
by
7.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories