105k views
2 votes
Use the power reducing formula to rewrite the expression in therms of first powers of hte cosines of ultiple angles 3cos^4x.

User Setempler
by
5.3k points

1 Answer

4 votes

The particular identity you want to use is


\cos^2x=\frac{1+\cos(2x)}2

Then


3\cos^4x=3(\cos^2x)^2=3\left(\frac{1+\cos(2x)}2\right)^2=\frac34(1+\cos(2x))^2

Expand the binomial to get


3\cos^4x=\frac34\left(1+2\cos(2x)+\cos^2(2x)\right)

Use the identity again to write


\cos^2(2x)=\frac{1+\cos(4x)}2

and so


3\cos^4x=\frac34\left(1+2\cos(2x)+\frac{1+\cos(4x)}2\right)


3\cos^4x=\frac38\left(3+4\cos(2x)+\cos(4x)\right)

User Michael LB
by
5.4k points