Answer:
a) Alternative hypothesis: the use of the coupons is isgnificantly higher than 10%.
Null hypothesis: the use of the coupons is not significantly higher than 10%.
The null and alternative hypothesis can be written as:

b) Point estimate p=0.13
c) At a significance level of 0.05, there is not enough evidence to support the claim that the proportion of coupons use is significantly higher than 10%.
Eagle should not go national with the promotion as there is no evidence it has been succesful.
Explanation:
The question is incomplete.
The sample data shows that x=13 out of n=100 use the coupons.
This is a hypothesis test for a proportion.
The claim is that the proportion of coupons use is significantly higher than 10%.
Then, the null and alternative hypothesis are:

The significance level is 0.05.
The sample has a size n=100.
The point estimate for the population proportion is the sample proportion and has a value of p=0.13.

The standard error of the proportion is:

Then, we can calculate the z-statistic as:

This test is a right-tailed test, so the P-value for this test is calculated as:
As the P-value (0.202) is greater than the significance level (0.05), the effect is not significant.
The null hypothesis failed to be rejected.
At a significance level of 0.05, there is not enough evidence to support the claim that the proportion of coupons use is significantly higher than 10%.