Answer:
The UCL is
![UCL = 0.054](https://img.qammunity.org/2021/formulas/mathematics/college/ks77zq2dqiwi2t7j8eet5qfaxdivc17ejx.png)
The LCL is
![LCL \approx 0](https://img.qammunity.org/2021/formulas/mathematics/college/likb2rmo3iog6lceonz57ocmtg7v6e11jd.png)
Explanation:
From the question we are told that
The quantity of each sample is n = 30
The average of defective products is
![p = 0.025](https://img.qammunity.org/2021/formulas/mathematics/college/f26b2u0uuvubbnhf7il6yt012er1zbc677.png)
Now the upper control limit [UCL] is mathematically represented as
![UCL = p + 3 \sqrt{(p(1-p))/(n) }](https://img.qammunity.org/2021/formulas/mathematics/college/hv2ecacahciila24i9x7sw7jsarsm6gc42.png)
substituting values
![UCL = 0.025 + 3 \sqrt{(0.025 (1-0.025))/(30) }](https://img.qammunity.org/2021/formulas/mathematics/college/fxw4ivuqp2wc3ep5a25vj5el127szly7w2.png)
![UCL = 0.054](https://img.qammunity.org/2021/formulas/mathematics/college/ks77zq2dqiwi2t7j8eet5qfaxdivc17ejx.png)
The upper control limit (LCL) is mathematically represented as
![LCL = p - 3 \sqrt{(p(1-p))/(n) }](https://img.qammunity.org/2021/formulas/mathematics/college/9qqnia2hmlq2agfxcog33ech6b9krlyjfs.png)
substituting values
![LCL = -0.004](https://img.qammunity.org/2021/formulas/mathematics/college/5aj5yiw2fsqy8slivuah1db9hcrfqus1ko.png)
![LCL \approx 0](https://img.qammunity.org/2021/formulas/mathematics/college/likb2rmo3iog6lceonz57ocmtg7v6e11jd.png)