Answer:
![\bar X \sim N(\mu. (\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/wvudmatqoxk96jg54iuofutxj2apvjj3q2.png)
And we want to find the following probability:
![P(\bar X >619)](https://img.qammunity.org/2021/formulas/mathematics/college/s4oy7dduytqxe4l1cysm5omkyxhzlrc0rz.png)
And we can use the z score formula given by:
![z=(\bar x -\mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/rvxq9a0ws960x627ovvha7ihjck73toe59.png)
And replacing we got:
![z=(619-606)/((62)/(√(99)))= 2.086](https://img.qammunity.org/2021/formulas/mathematics/college/6i8tvc9lr3l9p4h4zvf7zfnv193hn2me7j.png)
And we can use the normal standard distirbution and the complement rule to find the probability:
![P(z>2.086)=1 -P(z<2.086)= 1-0.982= 0.018](https://img.qammunity.org/2021/formulas/mathematics/college/m1xw2xvgzyev6zeebv6noj4ieh6yvx3o9d.png)
Explanation:
For this problem we have the following parameters given:
represent the mean
represent the true deviation
represent the sample size
For this case since the sample size is >30 we can use the central limit theorem and we can u se the following distribution for the sample mean
![\bar X \sim N(\mu. (\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/wvudmatqoxk96jg54iuofutxj2apvjj3q2.png)
And we want to find the following probability:
![P(\bar X >619)](https://img.qammunity.org/2021/formulas/mathematics/college/s4oy7dduytqxe4l1cysm5omkyxhzlrc0rz.png)
And we can use the z score formula given by:
![z=(\bar x -\mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/rvxq9a0ws960x627ovvha7ihjck73toe59.png)
And replacing we got:
![z=(619-606)/((62)/(√(99)))= 2.086](https://img.qammunity.org/2021/formulas/mathematics/college/6i8tvc9lr3l9p4h4zvf7zfnv193hn2me7j.png)
And we can use the normal standard distirbution and the complement rule to find the probability:
![P(z>2.086)=1 -P(z<2.086)= 1-0.982= 0.018](https://img.qammunity.org/2021/formulas/mathematics/college/m1xw2xvgzyev6zeebv6noj4ieh6yvx3o9d.png)