(1) Looks like the joint density is
![f_(X,Y)(x,y)=\begin{cases}cxy&\text{for }0<y<x<4\\0&\text{otherwise}\end{cases}](https://img.qammunity.org/2021/formulas/mathematics/college/ro12saz5aod1sas4fzh7qjfbo0nuu0c14y.png)
In order for this to be a proper density function, integrating it over its support should evaluate to 1. The support is a triangle with vertices at (0, 0), (4, 0), and (4, 4) (see attached shaded region), so the integral is
![\displaystyle\int_0^4\int_y^4 cxy\,\mathrm dx\,\mathrm dy=\int_0^4\frac{cy}2(4^2-y^2)=32c=1](https://img.qammunity.org/2021/formulas/mathematics/college/5wkglnxgqir8xn48xsw9ewh5dhxgzsxths.png)
![\implies\boxed{c=\frac1{32}}](https://img.qammunity.org/2021/formulas/mathematics/college/wlxs45g9sxzibfpigx0kvafn666nizlta4.png)
(2) The region in which X > 2 and Y < 1 corresponds to a 2x1 rectangle (see second attached shaded region), so the desired probability is
![P(X>2,Y<1)=\displaystyle\int_2^4\int_0^1(xy)/(32)\,\mathrm dy\,\mathrm dx=\boxed{\frac3{32}}](https://img.qammunity.org/2021/formulas/mathematics/college/wfh08ma562gvu69fuvckpa88p8vpmzhmt9.png)
(3) Are you supposed to find the marginal density of X, or the conditional density of X given Y?
In the first case, you simply integrate the joint density with respect to y:
![f_X(x)=\displaystyle\int_(-\infty)^\infty f_(X,Y)(x,y)\,\mathrm dy=\int_0^x(xy)/(32)\,\mathrm dy=\begin{cases}(x^3)/(64)&\text{for }0<x<4\\0&\text{otherwise}\end{cases}](https://img.qammunity.org/2021/formulas/mathematics/college/ufomp7fnkc3dmrbzkr9sq4b0mr98v56db7.png)
In the second case, we instead first find the marginal density of Y:
![f_Y(y)=\displaystyle\int_y^4(xy)/(32)\,\mathrm dx=\begin{cases}(16y-y^3)/(64)&\text{for }0<y<4\\0&\text{otherwise}\end{cases}](https://img.qammunity.org/2021/formulas/mathematics/college/njebnwh3lsd06ogr3ub9hp8er88svr3613.png)
Then use the marginal density to compute the conditional density of X given Y:
![f_(X\mid Y)(x\mid y)=(f_(X,Y)(x,y))/(f_Y(y))=\begin{cases}(2xy)/(16y-y^3)&\text{for }y<x<4\text{ where }0<y<4\\0&\text{otherwise}\end{cases}](https://img.qammunity.org/2021/formulas/mathematics/college/ohhjnu8uqi7e5ecljnjjnf1po56wlyp9ue.png)