Answer:
The answer is "Option C"
Explanation:
Given:
point A' and B' are: (0, 6) (6, 9)
To above points we calculate point AB that is (0,2) and (2,3)
Distance formula:
![\bold{D=√((x_2-x_1)^2+(y_2-y_1)^2)}\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/nw0nesucb1nl1ax8fbeic7hgme4ohttqvj.png)
calcuate AB point distance:
![x_1=0\\y_1=2\\x_2=2\\y_2=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/bdcdderogja69hht8ojr9xs0zqlo5ql973.png)
![D=√((2-0)^2+(3-2)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4ba6fx2h1xh4xfnb2udfqzdmc8mgiwgcsk.png)
![=√(2^2+1^2)\\\\=√(4+1)\\\\=√(5)\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/7cpy7l6r7s6g13ziik7tecihi98nje4z0w.png)
calculating A'B' point distance:
![x_1=0\\y_1=6\\x_2=6\\y_2=9\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/akt7q6qzba945vs5amduwzy72qhvaa2289.png)
![D=√((6-0)^2+(9-6)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6et1hxihz5qupahxt6fj168j2z85jar2kk.png)
![= √((6)^2+(3)^2)\\\\= √(36+9)\\\\= √(45)\\\\= √(3* 3* 5)\\\\= 3√(5)\\\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/mlslkrmbq9bdhyha1dsrqjpgb19emqmyfm.png)
If we divide:
![=(3√(5))/(√(5))\\\\=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/ws8y0emr12eg00q69ghfmimd4eup4uj642.png)
The final answer is "3".