Answer:
The correct answer is:
![+6x^(2)\\-9y^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/usfplc1vmfci1xc6xe42zleddmy5g83eiw.png)
Explanation:
We are given the term:
![3x^(2) +5y^(2) [\text{ \ }] +3 [\text{ \ }] +4y^(2) +6 = 9x^(2) -y^(2) +9](https://img.qammunity.org/2021/formulas/mathematics/high-school/ye7czz93fh183io0wj8n0y52gff5rvms7m.png)
We have to fill in to the empty spaces such that the above equation gets satisfied.
First of all, let us simplify the LHS (Left Hand Side):
![3x^(2) +5y^(2) [\text{ \ }] +3 [\text{ \ }] +4y^(2) +6\\\Rightarrow 3x^(2) +5y^(2) +4y^(2) [\text{ \ }] [\text{ \ }] +6 +3\\\Rightarrow 3x^(2) +9y^(2) [\text{ \ }] [\text{ \ }] +9](https://img.qammunity.org/2021/formulas/mathematics/high-school/etfgi44dssnkp4aqg701q2fwri4pruk0o3.png)
Now, let us equate the LHS and RHS (Right Hand Side):
![\Rightarrow 3x^(2) +9y^(2) [\text{ \ }] [\text{ \ }] +9 = 9x^(2) -y^(2) +9](https://img.qammunity.org/2021/formulas/mathematics/high-school/m18q92m8z1awwd7w02g8pxl8a3i4gd3wfc.png)
Equating the coefficients of
in LHS and RHS:
One box will have value =
![9x^(2) -3x^(2) =+6x^(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6fe8nr81niktc0fq1r514rph8v427g90e4.png)
Other box will have value =
![-y^(2) -9y^(2) =-10y^(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/u16fy406p5zvfmbm2wfc1mv2eip2cmzgd0.png)
The correct answer is:
![+6x^(2)\\-9y^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/usfplc1vmfci1xc6xe42zleddmy5g83eiw.png)
So, if we fill the boxes with above values, the expression will be simplified as given.