Answer:
a) 18 in x 18 in x 18 in
b)
![S = 1944\ in2](https://img.qammunity.org/2021/formulas/mathematics/college/cqi7rmzixpaklav76585sxnwxlgp393j2r.png)
Explanation:
a) Let's call 's' the side of the square base and 'h' the height of the solid.
The surface area is given by the equation:
![S = 2s^2 + 4sh](https://img.qammunity.org/2021/formulas/mathematics/college/qim6jalb1cp2duwwunho687v5hpa4qjvtx.png)
The volume of the solid is given by the equation:
![V = s^2h = 5832](https://img.qammunity.org/2021/formulas/mathematics/college/t5hgp2jzo1cn0cjfsmwvefgc6o9abhconw.png)
From the volume equation, we have that:
![h = 5832/s^2](https://img.qammunity.org/2021/formulas/mathematics/college/434rmazomi853a0n51m35jx94vazupik5t.png)
Then, using this value of h in the surface area equation, we have:
![S = 2s^2 + 4s(5832/s^2)](https://img.qammunity.org/2021/formulas/mathematics/college/eucftqze4v3vpijcq61may8assfw1vux02.png)
![S = 2s^2 + 23328/s](https://img.qammunity.org/2021/formulas/mathematics/college/1vz50gn8rpzki5ifej567eh73wvc296l9g.png)
To find the side length that gives the minimum surface area, we can find where the derivative of S in relation to s is zero:
![dS/ds = 4s - 23328/s^2 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/vvdr2nc67ws8l5phx8n6ggj8y5z5d9vanb.png)
![4s = 23328/s^2](https://img.qammunity.org/2021/formulas/mathematics/college/5lqolcf0o2kwo1ut9j7sa605kl03zwzxh0.png)
![4s^3 = 23328](https://img.qammunity.org/2021/formulas/mathematics/college/ps70482nwvc2pskohekwxy36wq120g049c.png)
![s^3 = 23328/4 = 5832](https://img.qammunity.org/2021/formulas/mathematics/college/gqmv7mwnxqy9brnfff0vcycalthsfmzqlf.png)
![s = 18\ inches](https://img.qammunity.org/2021/formulas/mathematics/college/m8z5s91nle71bwmjnvsqi8mrb2xc49jsur.png)
The height of the solid is:
![h = 5832/(18)^2 = 18\ inches](https://img.qammunity.org/2021/formulas/mathematics/college/swq5cofqtsjwqvpp0r9gbk1jnx26x57vka.png)
b) The minimum surface area is:
![S = 2(18)^2 + 4(18)(18)](https://img.qammunity.org/2021/formulas/mathematics/college/p01zrwxhoe3w4q7w9h4eirm1nn9kmin7n2.png)
![S = 1944\ in2](https://img.qammunity.org/2021/formulas/mathematics/college/cqi7rmzixpaklav76585sxnwxlgp393j2r.png)