Answer:
Explanation:
Given z = x+iy
The polar form of a complex number

The nth root of the complex number is expressed according to de moivre's theorem as;
![z^{(1)/(n) } = [r(cos\theta + isin\theta)]^{(1)/(n) } \\z^{(1)/(n) } = \sqrt[n]{r} (cos((\theta+2nk)/(n) ) + isin((\theta+2nk)/(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/wj6b8cq0w3b8x4o57v8g7spckdxojhn57h.png)
r is the modulus of the complex number and
is the argument
r = √x²+y²

Given z = -9i
r = √0+(-9)²
r = √81
r = 9

The argument will be equivalent to 180-90 = 90°
The forth root of -9i will be expressed as shown according to de moivre's theorem;
![z_k^{(1)/(4) } = \sqrt[4]{9} (cos((90+2(4)k)/(4) ) + isin((90+2(4)k)/(4)))\\z_k^{(1)/(4) } = \sqrt[4]{9} (cos((90+8k)/(4) ) + isin((90+8k)/(4)))\\](https://img.qammunity.org/2021/formulas/mathematics/college/6bgh8a9q62uu1kme7a0mdwlx4qb2fhkaf0.png)
The complex roots are at when k = 0, 1, 2 and 3
When k = 0;
![z_0 = \sqrt[4]{9} (cos((90)/(4) ) + isin((90)/(4)))\\z_0 = \sqrt[4]{9} (cos(23) + isin(23))\\\\when\ k =1\\z_1 = \sqrt[4]{9} (cos((90+8)/(4) ) + isin((90+8)/(4)))\\z_1 = \sqrt[4]{9} (cos(25 ) + isin(25))\\\\when\ k =2\\z_2 = \sqrt[4]{9} (cos((90+16)/(4) ) + isin((90+16)/(4)))\\z_2 = \sqrt[4]{9} (cos(27 ) + isin(27))\\\\when\ k =3\\z_3 = \sqrt[4]{9} (cos((90+24)/(4) ) + isin((90+24)/(4)))\\z_3 = \sqrt[4]{9} (cos(29 ) + isin(29))\\](https://img.qammunity.org/2021/formulas/mathematics/college/zbmriha25wlo0kquuvn6o0vt7tsx6g98nt.png)
Note that all the degrees are rounded to the nearest whole number.