Answer:
a) 1.95 V
b) 1.87 mA
c) 0.115 A
Step-by-step explanation:
Given that
Number of primary turns, N(p) = 480
Number of secondary turns, N(s) = 7.8
Velocity of primary turns, V(p) = 120 V
Velocity of secondary turns, V(s) = ?
Current in the primary, I(p) = ?
Current in the secondary, I(s) ?
To solve this question, we would be using the formula
V(s)/V(p) = N(s)/N(s), now substituting the values, we have
V(s) / 120 = 7.8 / 480
V(s) = (7.8 * 120) / 480
V(s) = 936 / 480
V(s) = 1.95 V
To find the current in the primary, remember ohms law?
I = V/R
I(s) = V(s) / R(s)
I(s) = 1.95 / 17
I(s) = 0.115 A
Now, remember the relationship between current and voltage
I(p)/I(s) = V(s)/V(p)
I(p) / 0.115 = 1.95 / 120
I(p) = (1.95 * 0.115) / 120
I(p) = 0.22425 / 120
I(p) = 0.00187 A
I(p) = 1.87 mA