Answer:
a)
![\mathbf{(dx)/(dt) = 30 - 0.015 x}](https://img.qammunity.org/2021/formulas/mathematics/college/4daf5xvjpmlofjv69px0hip08vqzjsdwlh.png)
b)
![\mathbf{x = 2000 - 2000e^(-0.015t)}](https://img.qammunity.org/2021/formulas/mathematics/college/85ks9se1n3bumhtus694q5j1c8ne61zzxd.png)
c) the steady state mass of the drug is 2000 mg
d) t ≅ 153.51 minutes
Explanation:
From the given information;
At time t= 0
an intravenous line is inserted into a vein (into the tank) that carries a drug solution with a concentration of 500
The inflow rate is 0.06 L/min.
Assume the drug is quickly mixed thoroughly in the blood and that the volume of blood remains constant.
The objective of the question is to calculate the following :
a) Write an initial value problem that models the mass of the drug in the blood for t ≥ 0.
From above information given :
![Rate _((in))= 500 \ mg/L * 0.06 \ L/min = 30 mg/min](https://img.qammunity.org/2021/formulas/mathematics/college/dlma07e2aep7s28pcudaepufemvczdicc9.png)
![Rate _((out))=(x)/(4) \ mg/L * 0.06 \ L/min = 0.015x \ mg/min](https://img.qammunity.org/2021/formulas/mathematics/college/gcvtksx4bvld8c37epbx0pvmlxnovb18l6.png)
Therefore;
![(dx)/(dt) = Rate_((in)) - Rate_((out))](https://img.qammunity.org/2021/formulas/mathematics/college/eqfqtl75dge5wbbralc1bje9revk9ynm6g.png)
with respect to x(0) = 0
![\mathbf{(dx)/(dt) = 30 - 0.015 x}](https://img.qammunity.org/2021/formulas/mathematics/college/4daf5xvjpmlofjv69px0hip08vqzjsdwlh.png)
b) Solve the initial value problem and graph both the mass of the drug and the concentration of the drug.
![(dx)/(dt) = -0.015(x - 2000)](https://img.qammunity.org/2021/formulas/mathematics/college/xz17ph1imnk47agjj47hb4gk5csufm81sg.png)
![(dx)/((x - 2000)) = -0.015 * dt](https://img.qammunity.org/2021/formulas/mathematics/college/qqqssjf4q8smplb0o1g3vbjnyoaleszycc.png)
By Using Integration Method:
![ln(x - 2000) = -0.015t + C](https://img.qammunity.org/2021/formulas/mathematics/college/rgej5qdiwy3c1hfeaioc537g3clnkew877.png)
![x -2000 = Ce^{(-0.015t)](https://img.qammunity.org/2021/formulas/mathematics/college/ly4mug7rzoa7vssxreptxbuu9hg9ovxu59.png)
![x = 2000 + Ce^((-0.015t))](https://img.qammunity.org/2021/formulas/mathematics/college/cuqjgxxxlnpvnfvlx4pxn7qpaqg3rvrsdc.png)
However; if x(0) = 0 ;
Then
C = -2000
Therefore
![\mathbf{x = 2000 - 2000e^(-0.015t)}](https://img.qammunity.org/2021/formulas/mathematics/college/85ks9se1n3bumhtus694q5j1c8ne61zzxd.png)
c) What is the steady-state mass of the drug in the blood?
the steady-state mass of the drug in the blood when t = infinity
![\mathbf{x = 2000 - 2000e^(-0.015 * \infty )}](https://img.qammunity.org/2021/formulas/mathematics/college/maeswiwkqb1dyl8zqbxqpb2z3h5psbgoga.png)
x = 2000 - 0
x = 2000
Thus; the steady state mass of the drug is 2000 mg
d) After how many minutes does the drug mass reach 90% of its stead-state level?
After 90% of its steady state level; the mas of the drug is 90% × 2000
= 0.9 × 2000
= 1800
Hence;
![\mathbf{1800 = 2000 - 2000e^((-0.015t))}](https://img.qammunity.org/2021/formulas/mathematics/college/703ks5wq11iqoiw4pl5hq6gobvukkdj841.png)
![0.1 = e^{(-0.015t)](https://img.qammunity.org/2021/formulas/mathematics/college/pqp87c56rdps3ir6b56qs3f28527ft57ya.png)
![ln(0.1) = -0.015t](https://img.qammunity.org/2021/formulas/mathematics/college/nm6whe92bvpq9w7c0c9kdwv4jk1714xn28.png)
![t = -(In(0.1))/(0.015)](https://img.qammunity.org/2021/formulas/mathematics/college/4yd51ue9i9vkjdditxcwe4pico2cpalp9y.png)
t = 153.5056729
t ≅ 153.51 minutes