Answer:
A) Null and alternative hypothesis
B) M = 2.2 hours
C) s = 0.52 hours
D) P-value = 0.255
E) At a significance level of 0.05, there is not enough evidence to support the claim that the mean tree-planting time significantly differs from two hours.
Explanation:
This is a hypothesis test for the population mean.
The claim is that the mean tree-planting time significantly differs from two hours.
Then, the null and alternative hypothesis are:
The significance level is 0.05.
The sample has a size n=10.
The sample mean is M=2.2.
As the standard deviation of the population is not known, we estimate it with the sample standard deviation, that has a value of s=0.52.
The estimated standard error of the mean is computed using the formula:
Then, we can calculate the t-statistic as:
The degrees of freedom for this sample size are:
This test is a two-tailed test, with 9 degrees of freedom and t=1.216, so the P-value for this test is calculated as (using a t-table):
As the P-value (0.255) is bigger than the significance level (0.05), the effect is not significant.
The null hypothesis failed to be rejected.
At a significance level of 0.05, there is not enough evidence to support the claim that the mean tree-planting time significantly differs from two hours.
Sample mean and standard deviation: