Answer:
![(dx)/(dt)=-1.3846$ sales per day](https://img.qammunity.org/2021/formulas/mathematics/college/6961cwfx3n51yh7tblxus6e1xuqqm75hd0.png)
Explanation:
The price p, in dollars, and the number of sales, x, of a certain item follow the equation: 6p+3x+2px=69
Taking the derivative of the equation with respect to time, we obtain:
![6(dp)/(dt) +3(dx)/(dt)+2p(dx)/(dt)+2x(dp)/(dt)=0\\$Rearranging$\\6(dp)/(dt)+2x(dp)/(dt)+3(dx)/(dt)+2p(dx)/(dt)=0\\\\(6+2x)(dp)/(dt)+(3+2p)(dx)/(dt)=0](https://img.qammunity.org/2021/formulas/mathematics/college/33ux26647b2om4vr5pkmj0ru0t9hyd9fqx.png)
When x=3, p=5 and
![(dp)/(dt)=1.5](https://img.qammunity.org/2021/formulas/mathematics/college/22589rq67dm3w6beh3cubdr8u2q234fbvd.png)
![(6+2(3))(1.5)+(3+2(5))(dx)/(dt)=0\\(6+6)(1.5)+(3+10)(dx)/(dt)=0\\18+13(dx)/(dt)=0\\13(dx)/(dt)=-18\\(dx)/(dt)=-(18)/(13)\\\\(dx)/(dt)=-1.3846$ sales per day](https://img.qammunity.org/2021/formulas/mathematics/college/pd6ub36rejq04m02ze5jo5x6ecoafcedl7.png)
The number of sales, x is decreasing at a rate of 1.3846 sales per day.