Answer:
40
Explanation:
The prism is measured with cubes that are \dfrac12\text{ cm}
2
1
cmstart fraction, 1, divided by, 2, end fraction, start text, space, c, m, end text on all edges.
So, let's change our dimensions to be written in halves.
Hint #22 / 4
The length is \dfrac\redD52\text{ cm}
2
5
cmstart fraction, start color #e84d39, 5, end color #e84d39, divided by, 2, end fraction, start text, space, c, m, end text, so it is made up of \redD{\text{five}}fivestart color #e84d39, start text, f, i, v, e, end text, end color #e84d39 \dfrac12
2
1
start fraction, 1, divided by, 2, end fraction cubes.
The width is \dfrac\greenD42\text{ cm}
2
4
cmstart fraction, start color #1fab54, 4, end color #1fab54, divided by, 2, end fraction, start text, space, c, m, end text, so it is made up of \greenD{\text{four}}fourstart color #1fab54, start text, f, o, u, r, end text, end color #1fab54 rows of \dfrac12
2
1
start fraction, 1, divided by, 2, end fraction cubes.
So, the bottom layer of cubes is made up of \greenD44start color #1fab54, 4, end color #1fab54 rows of \redD55start color #e84d39, 5, end color #e84d39 cubes.
\greenD4\times \redD5=204×5=20start color #1fab54, 4, end color #1fab54, times, start color #e84d39, 5, end color #e84d39, equals, 20
The bottom layer has 202020 cubes.
Hint #33 / 4
The height is \dfrac\purpleD22\text{ cm}
2
2
cmstart fraction, start color #7854ab, 2, end color #7854ab, divided by, 2, end fraction, start text, space, c, m, end text, so it is made up of \purpleD{\text{two}}twostart color #7854ab, start text, t, w, o, end text, end color #7854ab layers of \dfrac12
2
1
start fraction, 1, divided by, 2, end fraction cubes.
So, there are \purpleD22start color #7854ab, 2, end color #7854ab layers of 202020 cubes.
\purpleD2\times 20=402×20=40start color #7854ab, 2, end color #7854ab, times, 20, equals, 40
Hint #44 / 4
It takes 404040 of the \dfrac12 \text{ cm}
2
1
cmstart fraction, 1, divided by, 2, end fraction, start text, space, c, m, end text cubes to fill the prism.