37.6k views
0 votes
A solution was prepared by dissolving 195.0 g of KCl in 215 g of water. Calculate the mole fraction of KCl. (The formula weight of KCl is 74.6 g/mol. The formula weight of water is 18.0 g/mol.)

User Harri
by
4.0k points

1 Answer

3 votes

Answer:

Approximately
0.180.

Step-by-step explanation:

The mole fraction of a compound in a solution is:


\displaystyle \frac{\text{Number of moles of compound in question}}{\text{Number of moles of all particles in the solution}}.

In this question, the mole fraction of
\rm KCl in this solution would be:


\displaystyle X_\mathrm{KCl} = \frac{n(\mathrm{KCl})}{n(\text{All particles in this soluton})}.

This solution consist of only
\rm KCl and water (i.e.,
\rm H_2O.) Hence:


\begin{aligned} X_\mathrm{KCl} &= \frac{n(\mathrm{KCl})}{n(\text{All particles in this soluton})}\\ &= \frac{n(\mathrm{KCl})}{n(\mathrm{KCl}) + n(\mathrm{H_2O})}\end{aligned}.

From the question:

  • Mass of
    \rm KCl:
    m(\mathrm{KCl}) = 195.0\; \rm g.
  • Molar mass of
    \rm KCl:
    M(\mathrm{KCl}) = 74.6\; \rm g \cdot mol^(-1).
  • Mass of
    \rm H_2O:
    m(\mathrm{H_2O}) = 215\; \rm g.
  • Molar mass of
    \rm H_2O:
    M(\mathrm{H_2O}) = 18.0\; \rm g\cdot mol^(-1).

Apply the formula
\displaystyle n = (m)/(M) to find the number of moles of
\rm KCl and
\rm H_2O in this solution.


\begin{aligned}n(\mathrm{KCl}) &= \frac{m(\mathrm{KCl})}{M(\mathrm{KCl})} \\ &= (195.0\; \rm g)/(74.6\; \rm g \cdot mol^(-1)) \approx 2.61\; \em \rm mol\end{aligned}.


\begin{aligned}n(\mathrm{H_2O}) &= \frac{m(\mathrm{H_2O})}{M(\mathrm{H_2O})} \\ &= (215\; \rm g)/(18.0\; \rm g \cdot mol^(-1)) \approx 11.9\; \em \rm mol\end{aligned}.

The molar fraction of
\rm KCl in this solution would be:


\begin{aligned} X_\mathrm{KCl} &= \frac{n(\mathrm{KCl})}{n(\text{All particles in this soluton})}\\ &= \frac{n(\mathrm{KCl})}{n(\mathrm{KCl}) + n(\mathrm{H_2O})} \\ &\approx (2.61 \; \rm mol)/(2.61\; \rm mol + 11.9\; \rm mol) \approx 0.180\end{aligned}.

(Rounded to three significant figures.)

User NickV
by
2.9k points