Answer:
The corresponding dimensions will be "x = 300 & y = 60".
Step-by-step explanation:
Available fencing = 600 ft
Fencing,
⇒
![5y+x=600](https://img.qammunity.org/2021/formulas/physics/college/7md1xp654xgui2cw4ee2xkqyknych2qsz2.png)
⇒
![x=600-5y](https://img.qammunity.org/2021/formulas/physics/college/7fvih187q16dnsaodz00asb1wne56lv9e2.png)
As we know,
⇒
![Area =xy](https://img.qammunity.org/2021/formulas/physics/college/eff1jxr0j7ie2aewkfd79wklca1cy5oe9i.png)
On substituting the given values, we get
![=(600-5y)y](https://img.qammunity.org/2021/formulas/physics/college/fykz8kfunykmm45kenpcwmb1rm279zl7ch.png)
...(equation 1)
On differentiating with respect to y, we get
⇒
![(dA)/(dy) =600-10y](https://img.qammunity.org/2021/formulas/physics/college/p9s27rbzcs57qxh57k93ur5bv6x8zmpvli.png)
![0 = 600-10y](https://img.qammunity.org/2021/formulas/physics/college/m788ij30azixikia108j8wb4ln1ke5lppc.png)
![600=10y](https://img.qammunity.org/2021/formulas/physics/college/y4dthz5h8ddudpgqilnon25xkp8qtqmqde.png)
![y=(600)/(10)](https://img.qammunity.org/2021/formulas/physics/college/mwpo4hxxh378dtb8rq2wzp7tvlgxwc59pb.png)
![y=60](https://img.qammunity.org/2021/formulas/mathematics/middle-school/h1cjth6wech9hq4h9k6opkqbdakds9vjoc.png)
On putting the values of y in equation 1, we get
⇒
![600(60)-5(60)^2](https://img.qammunity.org/2021/formulas/physics/college/tq9fprkyk412sc0it517ij65bxwmp1e5ty.png)
⇒
![600(60)-5(3600)](https://img.qammunity.org/2021/formulas/physics/college/lykkcx7r7kwl7i2iv7xgyq0nk4zyzqgpjs.png)
⇒
![36000 - 18000](https://img.qammunity.org/2021/formulas/physics/college/1ugey4h82fc2yzxmz8pp76vyvmdaj6puiu.png)
⇒
![18000](https://img.qammunity.org/2021/formulas/physics/college/orh0n13iqedjcfer2dc9p1b75t9q5mjpwo.png)
Dimensions of the rectangular area:
x = 300
y = 60