54.3k views
4 votes
Find the slope of the function when x=4

y=
2x+1/x2

Select one:
a. 386
b. 0.56 X
C. -0.16
d. 1/4
e. -0.125

1 Answer

4 votes

Answer:

Option C.

Explanation:

The given function is


y=(2x+1)/(x^2)

We need to find the slope of the function when x=4.

Differentiate the given function w.r.t. x.


(dy)/(dx)=(x^2(d)/(dx)(2x+1)-(2x+1)(d)/(dx)x^2)/((x^2)^2) (Using quotient rule)


(dy)/(dx)=(x^2(2+0)-(2x+1)(2x))/(x^4)


(dy)/(dx)=(2x^2-4x^2-2x)/(x^4)


(dy)/(dx)=(-2x^2-2x)/(x^4)


(dy)/(dx)=(-2x(x+1))/(x^4)


(dy)/(dx)=(-2(x+1))/(x^3)

Now substitute x=4 in the above equation.


(dy)/(dx)_(x=4)=(-2(4+1))/(4^3)


(dy)/(dx)_(x=4)=(-2(5))/(64)


(dy)/(dx)_(x=4)=(-10)/(64)


(dy)/(dx)_(x=4)=-0.15625


(dy)/(dx)_(x=4)\approx -0.16

Therefore, the correct option is C.

User Mkadan
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories