Answer:
m∠1 = 145°
m∠3 = 35°
m∠4 = 145°
m∠5 = 145°
m∠6 = 35°
m∠7 = 35°
m∠8 = 145°
Explanation:
In the picture attached,
line 'm' and line 'l' are the parallel lines and another line intersects these lines is a transverse.
m∠2 = 35°
Since ∠1 and ∠2 are supplementary angles,
m∠1 + m∠2 = 180°
m∠1 + 35° = 180°
m∠1 = 180° - 35°
m∠1 = 145°
∠1 ≅ ∠4 [Vertical angles]
m∠1 = m∠4 = 145°
∠2 ≅ ∠3 [Vertical angles]
m∠2 = m∠3 = 35°
∠3 ≅ ∠6 [Interior alternate angles]
m∠3 = m∠6 = 35°
Similarly, ∠4 ≅ ∠5 [Interior alternate angles]
m∠4 = m∠5 = 145°
∠6 ≅ ∠7 [Vertical angles]
m∠6 = m∠7 = 35°