64.5k views
0 votes
Write the given expression in terms of x and y only. tan(sin^-1(x)+cos^-1(y))

User GEkk
by
5.5k points

1 Answer

4 votes

Answer:

[xy + √(1−x²) √(1−y²)] / [y √(1−x²) − x √(1−y²)]

Explanation:

tan(sin⁻¹x + cos⁻¹y)

Use angle sum formula:

[tan(sin⁻¹x) + tan(cos⁻¹y)] / [1 − tan(sin⁻¹x) tan(cos⁻¹y)]

To evaluate these expressions, I suggest drawing right triangles.

For example, let's draw a triangle where x is the side opposite of angle θ, and the hypotenuse is 1. Therefore:

sin θ = x/1

θ = sin⁻¹x

Using Pythagorean theorem, the adjacent side is √(1−x²). Therefore:

tan θ = x / √(1−x²)

tan(sin⁻¹x) = x / √(1−x²)

Draw a new triangle. This time we'll make y the adjacent side to angle θ.

cos θ = y/1

θ = cos⁻¹y

Using Pythagorean theorem, the opposite side is √(1−y²). Therefore:

tan θ = √(1−y²) / y

tan(cos⁻¹y) = √(1−y²) / y

Substituting:

[x / √(1−x²) + √(1−y²) / y] / [1 − x / √(1−x²) × √(1−y²) / y]

Multiply top and bottom by √(1−x²).

[x + √(1−x²) √(1−y²) / y] / [√(1−x²) − x × √(1−y²) / y]

Multiply top and bottom by y.

[xy + √(1−x²) √(1−y²)] / [y √(1−x²) − x √(1−y²)]

User Lucas Gomes
by
5.6k points