Answer:
![$\left((x)/(2) + 3 y\right)^(4)=(x^(4))/(16) + (3)/(2) x^(3) y + (27)/(2) x^(2) y^(2) + 54 x y^(3) + 81 y^(4)$](https://img.qammunity.org/2021/formulas/mathematics/high-school/cmn3kmx2umwe9zoqrtkh0nskry3jvqll2r.png)
Explanation:
![$\left((1)/(2)x+3y \right)^4=\left((x)/(2)+3y \right)^4\\$](https://img.qammunity.org/2021/formulas/mathematics/high-school/4sdtfoqjilvszc8tprcjobimkdcfc1so0u.png)
Binomial Expansion Formula:
, also
![$\binom{n}{k}=(n!)/((n-k)!k!)$](https://img.qammunity.org/2021/formulas/mathematics/high-school/ou64sqfxae9g0bdnhbilq7akar632ndhpg.png)
We have to solve
![$\left((x)/(2) + 3 y\right)^(4)=\sum_(k=0)^(4) \binom{4}{k} \left(3 y\right)^(4-k) \left((x)/(2)\right)^k$](https://img.qammunity.org/2021/formulas/mathematics/high-school/r6creeqka4lolznpa023yvef51ttiror0f.png)
Now we should calculate for
![k=0, k=1, k=2, k=3 \text{ and } k =4;](https://img.qammunity.org/2021/formulas/mathematics/high-school/hdm9mfmwsxce344ecd1j8xtok7jc3qxacv.png)
First, for
![k=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/i3os8bswoeado7lggb3foxzxyrc7bgn0wz.png)
![$\binom{4}{0} \left(3 y\right)^(4-0) \left((x)/(2)\right)^(0)=(4!)/((4-0)! 0!)\left(3 y\right)^(4) \left((x)/(2)\right)^(0)=(4!)/(4!)(81y^4)\cdot 1 =81 y^(4)$](https://img.qammunity.org/2021/formulas/mathematics/high-school/tohizalhuhns7rowz3eomgoo8lcbxpcnnf.png)
It is the same procedure for the other:
For
![k=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9s1pdk88seyxqyj3a4mq8496qf0funf44y.png)
![$\binom{4}{1} \left(3 y\right)^(4-1) \left((x)/(2)\right)^(1)=54 x y^(3)$](https://img.qammunity.org/2021/formulas/mathematics/high-school/ubqtfnrs8enhrytg9oy0ve746moy6mcg1q.png)
For
![k=2](https://img.qammunity.org/2021/formulas/mathematics/college/grlhuhqjebhra3at96lgatuuxmvjuqjtxu.png)
![$\binom{4}{2} \left(3 y\right)^(4-2) \left((x)/(2)\right)^(2)=(27)/(2) x^(2) y^(2)$](https://img.qammunity.org/2021/formulas/mathematics/high-school/ox0mpmhczk7pqcq3ywvnbafv9248n8orn0.png)
For
![k=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/egrmq8i1mfyn15jhgnhhaa1b4gb36ykrl9.png)
![$\binom{4}{3} \left(3 y\right)^(4-3) \left((x)/(2)\right)^(3)=(3)/(2) x^(3) y$](https://img.qammunity.org/2021/formulas/mathematics/high-school/725ua9vao7ncnz2b1l2hl9rwjlouz7ofzr.png)
For
![k=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2jmv66p0kvb7uv08qhw8ip6ux1ak1gw4xo.png)
![$\binom{4}{4} \left(3 y\right)^(4-4) \left((x)/(2)\right)^(4)=(x^(4))/(16)$](https://img.qammunity.org/2021/formulas/mathematics/high-school/khiet6nkfuno3n5984ikg7t1rlf7uhf1f5.png)
You can perform the calculations, I will not type everything.
The answer is the sum of elements calculated.
Just organizing:
![$\left((x)/(2) + 3 y\right)^(4)=(x^(4))/(16) + (3)/(2) x^(3) y + (27)/(2) x^(2) y^(2) + 54 x y^(3) + 81 y^(4)$](https://img.qammunity.org/2021/formulas/mathematics/high-school/cmn3kmx2umwe9zoqrtkh0nskry3jvqll2r.png)