Answer:
![2√(1+tant)+C](https://img.qammunity.org/2021/formulas/mathematics/college/6a9py0lp0a5vmzre77gk9wxn46kuhj4ewo.png)
Explanation:
To integrate means to find the antiderivative of the function. For this problem, we can use u-substitution.
![\int\limits {(dt)/(cos^2t√(1+tant) ) } \](https://img.qammunity.org/2021/formulas/mathematics/college/exveka3xdsofm3hyrth001yd6lttuhrkip.png)
Let's first use our identities to rewrite the function. Since
, we can use this identity.
![\int\limits {(sec^2t)/(√(1+tant) ) } \,](https://img.qammunity.org/2021/formulas/mathematics/college/kg6qt0qft4hpz0keby5f3hs0hfh8flqdg4.png)
![u=√(1+tant)](https://img.qammunity.org/2021/formulas/mathematics/college/fn2uhb0gs4d3j7twf7nwhvy4ip8laipn8d.png)
![du=(sec^2t)/(2√(1+tant) ) dt](https://img.qammunity.org/2021/formulas/mathematics/college/2vastzzhhengcgyw80quoanpql5nqsxdz7.png)
Now that we have u and du, we can plug them back in.
![\int\limits {2} \, du](https://img.qammunity.org/2021/formulas/mathematics/college/qmmbjlc7f7gujextninwg07esac8ictwco.png)
![\int\limits{2} \, du=2u](https://img.qammunity.org/2021/formulas/mathematics/college/bv8n50zf547ff2dvihoh2wq78wolabah3w.png)
Since we know u, we can plug that in.
![2√(1+tant)](https://img.qammunity.org/2021/formulas/mathematics/college/6684n8bmzh7iqehihq7on5709c2skzmj6v.png)
This may seem like the correct answer, but we forgot to add the constant.
![2√(1+tant)+C](https://img.qammunity.org/2021/formulas/mathematics/college/6a9py0lp0a5vmzre77gk9wxn46kuhj4ewo.png)