145k views
4 votes
Find the sum

2b/(b+a)^2 and 2a/(b^2-a^2)

the sum is a fraction with __ in the numerator and in the __ in the denominator.

Find the sum 2b/(b+a)^2 and 2a/(b^2-a^2) the sum is a fraction with __ in the numerator-example-1

1 Answer

2 votes

Answer:

Numerator = 2(b^2+a^2) or equivalently 2b^2+2a^2

Denominator = (b+a)^2*(b-a), or equivalently b^3+ab^2-a^2b0-a^3

Explanation:

Let

S = 2b/(b+a)^2 + 2a/(b^2-a^2) factor denominator

= 2b/(b+a)^2 + 2a/((b+a)(b-a)) factor denominators

= 1/(b+a) ( 2b/(b+a) + 2a/(b-a)) find common denominator

= 1/(b+a) ((2b*(b-a) + 2a*(b+a))/((b+a)(b-a)) expand

= 1/(b+a)(2b^2-2ab+2ab+2a^2)/((b+a)(b-a)) simplify & factor

= 2/(b+a)(b^2+a^2)/((b+a)(b-a)) simplify & rearrange

= 2(b^2+a^2)/((b+a)^2(b-a))

Numerator = 2(b^2+a^2) or equivalently 2b^2+2a^2

Denominator = (b+a)^2*(b-a), or equivalently b^3+ab^2-a^2b0-a^3

User RBA
by
4.3k points