Answer:
x = 1 and y = 4
Explanation:
m² = 7x + 7; m³= 4y and m∧4 = 112
√(m∧4) = √112
∴ m² = √112
Hence, 7x + 7 = √112
(7x + 7)² = 112
49x² + 14x + 49 = 112
49x² + 14x - 63 = 0
7x² + 2x - 9 = 0
7x² + 9x - 7x - 9 = 0
x(7x + 9) - 1(7x + 9) = 0
(x - 1)(7x + 9) = 0
x - 1 = 0
∴ x = 1
When x = 1
m²= 7 + 7 = 14
m³= 4y and m∧4 = 112
Also m∧4/m²= m² = 112/14 = 8
Hence, m° = 2; m = 2 X 2 = 4; m² = 2 x 2 x 2 = 8; m³= 2 x 2 x2 x 2 = 16
m³ = 16 = 4y
∴ y = 16/4 = 4