Answer:
mass of the gram after 28 days = 1.29 grams
Step-by-step explanation:
From the diagram attached below; we would see the plot of the mass vs the time (days).
However ; to predict what would be the mass of the crystal after 28 days if the growth is linear; we have the following analysis;
Let the mass be Y ( since it falls on the y-axis) and the time (days) be X (since it falls on the x-axis)
So; we can have a table as shown below:
X Y XY XX
0 0.500 0 0
7 0.648 4.536 49
14 0.899 12.586 196
21 1.081 22.701 441
Total
:42 3.128 39.823 686
If the growth is linear ; the linear regression equation can be represented as :
y = a+ bx
where ;
![a = (\sum Y * \sum XX - \sum X * \sum XY )/(n* \sum X X- ( \sum X)^2)](https://img.qammunity.org/2021/formulas/chemistry/college/yg66mtsdx1ha7ffimaiuvuaxsxumpp37b3.png)
and
![b= (n * \sum XY - \sum X* \sum Y )/(n* \sum X X- ( \sum X)^2)](https://img.qammunity.org/2021/formulas/chemistry/college/w4o8xtfa7qaibemdctnj0vea2tdl1937yc.png)
n = samples given = 4
x = number of days = 28
so;
from the table ; replacing the corresponding values; we have:
![a = (3.128* 686 - 42 * 39.823 )/(4* 686- (42)^2)](https://img.qammunity.org/2021/formulas/chemistry/college/a8ubwh2o6zcokw1swfy81sk3xzoae9bh22.png)
![a = (2145.808 -1672.566)/(2744- 1764)](https://img.qammunity.org/2021/formulas/chemistry/college/dotgj0014km61eiizmsy4c3k8b1wbnpwhz.png)
![a = (473.242)/(980)](https://img.qammunity.org/2021/formulas/chemistry/college/ny6sw9q9gq4vnr48y68q5i0615oo028quf.png)
a = 0.4829
![b= (4 * 39.823 - 42* 3.128 )/(4* 686- ( 42)^2)](https://img.qammunity.org/2021/formulas/chemistry/college/zm2uzp6hd4k54enh0h6h7jx8e2vonur48d.png)
![b= (159.292 -131.376 )/(2744- 1764)](https://img.qammunity.org/2021/formulas/chemistry/college/ah6x9iamumx2zsfywnq5ukttw4zlozkq4e.png)
![b= (27.916 )/(980)](https://img.qammunity.org/2021/formulas/chemistry/college/4qq8km8ahdzqsnvsed8znqyjhoxusigbdu.png)
b = 0.0289
Recall:
y = a+ bx
y = 0.4829 + 0.0289 (28)
y = 0.4829 + 0.8092
y = 1.2921 grams
y ≅ 1.29 grams
mass of the gram after 28 days = 1.29 grams