190k views
0 votes
A particle moves along line segments from the origin to the points (2, 0, 0), (2, 5, 1), (0, 5, 1), and back to the origin under the influence of the force field F(x, y, z)

Find the work done.

User Joao Costa
by
4.6k points

1 Answer

1 vote

Answer:

Work done = 0 J

Explanation:

work done= ∫ F. dr

=
\int\limits^2_0 {x} \, dx +
\int\limits^2_2 {x} \, dx +
\int\limits^0_2 {x} \, dx +
\int\limits^0_0 {x} \, dx +
\int\limits^0_0 {y} \, dy +
\int\limits^5_0 {y} \, dy +
\int\limits^5_5 {y} \, dy +
\int\limits^0_5 {y} \, dy +
\int\limits^0_0 {z} \, dz +
\int\limits^1_0 {z} \, dz +
\int\limits^1_1 {z} \, dz +
\int\limits^0_1 {z} \, dz

Work done= x²/2 + y²/2 + z²/2

Applying integral limits for entire pathway

Work done= 2 + 0 -2 + 0 + 0+ 25/2 - 25/2 + 0 + 1/2 + 0 - 1/2

Work done = 0 J

User Brainbag
by
5.9k points