56.6k views
2 votes
A student writes an incorrect step while checking if the sum of the measures of the two remote interior angles of triangle ABC below is equal to the measure of the exterior angle. A triangle ABC is shown. The base of the triangle extends into a straight line. The angle formed between this straight line and the edge of the triangle is marked as p. The angle adjacent to p is marked as o, and the other two angles inside the triangle are marked as m and n. Step 1: m∠m + m∠n + m∠p = 180 degrees (sum of angles of a triangle) Step 2: m∠p + m∠o = 180 degrees (adjacent supplementary angles) Step 3: Therefore, m∠m + m∠n + m∠o = m∠o + m∠p Step 4: So, m∠m + m∠n = m∠p In which step did the student first make a mistake and how can it be corrected? Step 1; it should be m∠m + m∠n + m∠o = 180 degrees (sum of angles in a triangle) Step 1; it should be m∠m + m∠n + m∠o = 90 degrees (adjacent angles) Step 2; it should be m∠o + m∠p = 180 degrees (alternate exterior angles) Step 2; m∠p − m∠o = 90 degrees (alternate interior angles)

1 Answer

3 votes

Answer:

(A)Step 1; it should be m∠m + m∠n + m∠o = 180 degrees (sum of angles in a triangle)

Explanation:

  • In the triangle, the exterior angle = p
  • The adjacent interior angle =o
  • The two opposite angles are marked m and n

The steps followed by the student are:

Step 1: m∠m + m∠n + m∠p = 180 degrees (sum of angles of a triangle)

Step 2: m∠p + m∠o = 180 degrees (adjacent supplementary angles)

Step 3: Therefore, m∠m + m∠n + m∠o = m∠o + m∠p

Step 4: So, m∠m + m∠n = m∠p

We observe that the student made a mistake in Step 1, it should be m∠m + m∠n + m∠o = 180 degrees (sum of angles in a triangle).

p is outside the triangle, therefore it cannot form one of the angles in the triangle.

User Daniel Minnaar
by
4.9k points