89.0k views
2 votes
assume that 0<x<pi/2 and 0<y<pi/2. find the exact value of sin(x+y) if cosx=8/17 and siny= 12/37​

2 Answers

6 votes

Answer: A

Step-by-step explanation: edge 2021

User Bobasti
by
5.2k points
0 votes

Answer:

621 / 629

Explanation:

We are given the following information -

cos x =
(8)/(17), and sin y =
(12)/(37)

Respectively we can use the following information -

sin( x + y ) = sin x ( cos y ) + sin y ( cos x ),


cos^2x + sin^2x = 1,\\cos^2y + sin^2y = 1

Knowing that cos^2x + sin^2x = 1, cos^2y + sin^2y = 1, we can calculate the value of sin x and cos y, plugging it into the first bit " sin( x + y ) = sin x ( cos y ) + sin y ( cos x ) "


sin^2x = 1 - cos^2x,\\sin^2x = 1 - ( 8 / 17 )^2,\\sin^2x = 15^2 / 17^2\\----------------\\sin ( x ) = 15 / 17

Respectively cos y should be 35 / 37 -


cos^2y = 1 - sin^2y,\\cos^2y = 1 - ( 12 / 37 )^2,\\cos^2y = 35^2 / 37^2\\----------------\\cos ( y ) = 35 / 37

Thus,

sin( x + y ) = ( 15 / 17 ) * ( 35 / 37 ) + ( 12 / 37 ) * ( 8 / 17 ),

sin( x + y ) = 621 / 629

Hope that helps!

User Dingle
by
5.0k points