Answer:
g(x)<j(x)<k(x)<f(x)<m(x)<h(x)
Explanation:
1.
![f(x)=(x^2+x-20)/(x^2+4)](https://img.qammunity.org/2021/formulas/mathematics/college/295squjk9poc5ywqcbd5xzcn0kjhlct0xx.png)
The denominator of f is defined for all real values of x
Therefore, the function is continuous on the set of real numbers
![\lim_(x\rightarrow 5)(x^2+x-20)/(x^2+4)=(25+5-20)/(25+4)=(10)/(29)=0.345](https://img.qammunity.org/2021/formulas/mathematics/college/1ct46a6xdl36yn2uf67z14mueiirkptyts.png)
3.
![h(x)=(3x-5)/(x^2-5x+7)](https://img.qammunity.org/2021/formulas/mathematics/college/9eklr9ek0phm9tjwqh96rcsgt1iwm26k35.png)
![x^2-5x+7=0](https://img.qammunity.org/2021/formulas/mathematics/college/dui0xdgsc7dpq6ifgff75nxk2cqu2cj8db.png)
It cannot be factorize .
Therefore, it has no real values for which it is not defined .
Hence, function h is defined for all real values.
![\lim_(x\rightarrow 5)(3x-5)/(x^2-5x+7)=(15-5)/(25-25+7)=(10)/(7)=1.43](https://img.qammunity.org/2021/formulas/mathematics/college/x23z9q2ceulzqddggur663c49v24bbjdp3.png)
2.
![g(x)=(x-17)/(x^2+75)](https://img.qammunity.org/2021/formulas/mathematics/college/v422tmxf5ryhsxq7ysic9ppk42dp4ef4f8.png)
The denominator of g is defined for all real values of x.
Therefore, the function g is continuous on the set of real numbers
![\lim_(x\rightarrow 5)(x-17)/(x^2+75)=(5-17)/(25+75)=(-12)/(100)=-0.12](https://img.qammunity.org/2021/formulas/mathematics/college/4bl43lq14mrd9iz8yb98c9mn30gqwfmjia.png)
4.
![i(x)=(x^2-9)/(x-9)](https://img.qammunity.org/2021/formulas/mathematics/college/zbjbbodaji3i1r82k8x3ioyj7t1lg56ufd.png)
x-9=0
x=9
The function i is not defined for x=9
Therefore, the function i is not continuous on the set of real numbers.
5.
![j(x)=(4x^2-7x-65)/(x^2+10)](https://img.qammunity.org/2021/formulas/mathematics/college/oj0vbjlxb79kur9sr6473r52mnqor3wwd2.png)
The denominator of j is defined for all real values of x.
Therefore, the function j is continuous on the set of real numbers.
![\lim_(x\rightarrow 5)(4x^2-7x-65)/(x^2+10)=(100-35-65)/(25+10)=0](https://img.qammunity.org/2021/formulas/mathematics/college/c1t7kb8zpk9stkth7doo9trzctx35z3gup.png)
6.
![k(x)=(x+1)/(x^2+x+29)](https://img.qammunity.org/2021/formulas/mathematics/college/2kbd2sjennqmkxxudusljc3r19l9sdgylr.png)
![x^2+x+29=0](https://img.qammunity.org/2021/formulas/mathematics/college/ws7tqj4zzo394f5a7u3xmm8yhv70cwagm0.png)
It cannot be factorize .
Therefore, it has no real values for which it is not defined .
Hence, function k is defined for all real values.
![\lim_(x\rightarrow 5)(x+1)/(x^2+x+29)=(5+1)/(25+5+29)=(6)/(59)=0.102](https://img.qammunity.org/2021/formulas/mathematics/college/3n96hjbt13s68t11mbp0lvlheh62bxxjab.png)
7.
![l(x)=(5x-1)/(x^2-9x+8)](https://img.qammunity.org/2021/formulas/mathematics/college/x8i00qmzle8s5mify82oia09w388icd9sf.png)
![x^2-9x+8=0](https://img.qammunity.org/2021/formulas/mathematics/college/p7wnpels40j55lzv0biz3o72st9h16kcgj.png)
![x^2-8x-x+8=0](https://img.qammunity.org/2021/formulas/mathematics/college/58on063vh4wmceqqjrstw6926pza28xmko.png)
![x(x-8)-1(x-8)=0](https://img.qammunity.org/2021/formulas/mathematics/college/gxkoryd2gkinv6bdxkjy3qlt68y26yermd.png)
![(x-8)(x-1)=0](https://img.qammunity.org/2021/formulas/mathematics/college/wr4gvjdyzatt62kqy94g2levznz5npaz62.png)
![x=8,1](https://img.qammunity.org/2021/formulas/mathematics/college/ayt4cq7rl86ic1h3hc6vqlsk4w1b6lliwp.png)
The function is not defined for x=8 and x=1
Hence, function l is not defined for all real values.
8.
![m(x)=(x^2+5x-24)/(x^2+11)](https://img.qammunity.org/2021/formulas/mathematics/college/8c87e03v34jyxrq8tj97x6z7tui21cvkdv.png)
The denominator of m is defined for all real values of x.
Therefore, the function m is continuous on the set of real numbers.
![\lim_(x\rightarrow 5)(x^2+5x-24)/(x^2+11)=(25+25-24)/(25+11)=(26)/(36)=(13)/(18)=0.722](https://img.qammunity.org/2021/formulas/mathematics/college/ry1qvkfjy4iwni7d2qzh12748zm2e3ob27.png)
g(x)<j(x)<k(x)<f(x)<m(x)<h(x)