Answer:
![sin(u) cot(u) cos(u) = cos^(2)(u)](https://img.qammunity.org/2021/formulas/mathematics/college/4drzkudplc19h4ujfq9pqrysbez5i2lxi8.png)
Step-by-step explanation:
![sin(u) cot(u) cos(u)](https://img.qammunity.org/2021/formulas/mathematics/college/ljibkxvcidb0lx7wionbpzufq0iu3usipa.png)
First, let us simplify cot(u) as follows:
cot (u) =
also,
![tan (u) = (sin (u))/(cos(u))](https://img.qammunity.org/2021/formulas/mathematics/college/ekj2lvlttjbavzgrz0sp4nmsh53cnrcyee.png)
∴
![(1)/(tan(u)) = (1)/((sin(u))/(cos(u)) ) = (cos(u))/(sin(u))](https://img.qammunity.org/2021/formulas/mathematics/college/rtezh73axcz1j0fmkc00ey0caibb3737hj.png)
Hence the original expression becomes:
![sin(u).(cos(u))/(sin(u)) .cos(u)](https://img.qammunity.org/2021/formulas/mathematics/college/jq1684gb8giq5das4zlt92pdup4ju3fo9b.png)
Next, sin(u) will cancel each other out, leaving the expression below:
![cos(u) . cos(u) = cos^(2) (u)](https://img.qammunity.org/2021/formulas/mathematics/college/6zjzmbwbyjq43phbsmsd5v1yc66offe6nh.png)
hence:
![sin(u) cot(u) cos(u) = cos^(2)(u)](https://img.qammunity.org/2021/formulas/mathematics/college/4drzkudplc19h4ujfq9pqrysbez5i2lxi8.png)
I also found a similar expression with a plus (+) sign after the "sin(u)" online, and if this was your question, the solution will be as follows:
sin(u)+ cot(u) cos(u)
![sin(u) + (cos(u))/(sin(u)) . cos (u)](https://img.qammunity.org/2021/formulas/mathematics/college/8zi6snp2nycu2wy3w1o9epgadmfkrdk6e7.png)
![= sin(u) + (cos^(2) (u))/(sin(u))](https://img.qammunity.org/2021/formulas/mathematics/college/p9bprhbcmrsj791xai5yqembflaxguqdxv.png)
(note that
, hence multiplying it with sin(u) does not change anything in the expression.)
![(sin^(2) (u))/(sin(u)) + (cos^(2)(u) )/(sin(u)) = (sin^(2)(u) + cos^(2)(u) )/(sin(u))](https://img.qammunity.org/2021/formulas/mathematics/college/uo41cb6ewasppodubihkxxnu3jovrgud5g.png)
Now the relationship sin²(u) + cos²(u) = 1
Therefore:
![(sin^(2)(u) + cos^(2)(u) )/(sin(u)) = (1)/(sin(u))](https://img.qammunity.org/2021/formulas/mathematics/college/5uzicp7t630l9f7crut3g7olno1kmr4y8p.png)
Hence,
![sin(u)+ cot(u) cos(u) = (1)/(sin(u))](https://img.qammunity.org/2021/formulas/mathematics/college/mls4hbqhy9yfj6batvde2fo70vpfcokg7i.png)