Answer:
Option (1)
Explanation:
Coordinates of the vertices of a quadrilateral WXYZ drawn in the figure are,
W(-1, 4), X(2, 2), Y(0, -1), Z(-3, 1)
Length of a segment having ends as
and
is represented by,
d =
![√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/j1aab9od514eyoxydxlm0fxc2m3p0n16p9.png)
Length of WX =
![√((-1-2)^2+(4-2)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9fsew3788i5hmfa1q0cw224b9g3f0qa4n9.png)
=
![√(9+4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/s8n6w0707uifwyo84mtllsd6y9mcrjz2pv.png)
=
![√(13)](https://img.qammunity.org/2021/formulas/mathematics/college/8v0laomqr8x2mvoubh414vl5rnw9efjmph.png)
Length of XY =
![√((2-0)^2+(2+1)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/d7x16tfc6eo75k9biatdq5jq4419quqrdg.png)
=
![√(13)](https://img.qammunity.org/2021/formulas/mathematics/college/8v0laomqr8x2mvoubh414vl5rnw9efjmph.png)
Length of YZ =
![√((0+3)^2+(-1-1)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/954bco2a680ros1pk2dqht6jbi3fx3p19a.png)
=
![√(13)](https://img.qammunity.org/2021/formulas/mathematics/college/8v0laomqr8x2mvoubh414vl5rnw9efjmph.png)
Length of ZW =
![√((-1+3)^2+(4-1)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/xkjxkgzx9qv3q4vecbwl72z21ni02nmkm0.png)
=
![√(13)](https://img.qammunity.org/2021/formulas/mathematics/college/8v0laomqr8x2mvoubh414vl5rnw9efjmph.png)
Slope of side WX (
) =
![(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kb22fsdtkimrfbfy51hnyncxhdjkkxel3s.png)
=
![(4-2)/(-1-2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/j68e716upf434mv443snjcw6ywgee50enk.png)
=
![-(2)/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9b735wr1uu4p8fxc1vii1igfgpgrg7hpoy.png)
Slope of side XY (
) =
![(2+1)/(2-0)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kein5ctzmtbht557pbfgzep2i42aoosae3.png)
=
![(3)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/810xodspel5mrswej0fay1vvz0sburw3kp.png)
By the property of perpendicular lines,
![m_1* m_2=-1](https://img.qammunity.org/2021/formulas/mathematics/college/70emitg2ph8bohvurr59ncv16w2i8bu4oi.png)
![(-(2)/(3))((3)/(2))=-1](https://img.qammunity.org/2021/formulas/mathematics/high-school/n9575ccqlnw09twoajsxi49mfigd1lg9p0.png)
therefore, WX and XY are perpendicular.
Slope of YZ (
) =
![m_2* m_3=((3)/(2))* (-(2)/(3))=-1](https://img.qammunity.org/2021/formulas/mathematics/high-school/r35a61pcbilh0m1ak7oms1itoqrmc4zvb0.png)
Therefore, XY ⊥ YZ
Similarly, we can prove YZ ⊥ ZW.
Therefore, quadrilateral WXYZ is a SQUARE.
Option (1) will be the answer.