Answer:
1. All real numbers
2. All real numbers except y = 0
3. All real numbers except x = -7
4. All real numbers except b = 10
Explanation:
For any function to be defined at a particular value, it should not be approaching to a value
or it should not give us the
(zero by zero) form when the input is given to the function.
The value of function will depend on the denominator.
Now, let us consider the given functions one by one:
1. 5y+2
Here denominator is 1. So, it can not attain a value
or
(zero by zero) form
So, for all real numbers, the function is defined.
![2.\ (18)/(y)](https://img.qammunity.org/2021/formulas/mathematics/college/cutca60pmsa5cjb1i0ydiud9szmili9myb.png)
At y = 0, the value
![At\ y =0, (18)/(y) \rightarrow \infty](https://img.qammunity.org/2021/formulas/mathematics/college/skhsvoh88hfnzsvfvg0sufeu9ddmdtyqrh.png)
So, the given function is defined for all real numbers except y = 0
![3.\ (1)/(x+7)](https://img.qammunity.org/2021/formulas/mathematics/college/jdobc5spn8t8p7pj1kr4hugim011iaa0ez.png)
Let us consider denominator:
x + 7 can be zero at a value x = -7
![At\ x =-7, (1)/(x+7) \rightarrow \infty](https://img.qammunity.org/2021/formulas/mathematics/college/3rij1ztmpaw08nsq23uc6o34clptsao01z.png)
So, the given function is defined for all real numbers except x = -7
![4.\ (2b)/(10-b)](https://img.qammunity.org/2021/formulas/mathematics/college/rs56wbpe08wybf51q1i0jsogl3g1rbxtce.png)
Let us consider denominator:
10-b can be zero at a value b = 10
![At\ b =10, (2b)/(10-b) \rightarrow \infty](https://img.qammunity.org/2021/formulas/mathematics/college/so7pvblc8t4a2hus4a42ds8ec5osw2y7xo.png)
So, the given function is defined for all real numbers except b = 10