132k views
2 votes
An infinitely long line of charge with uniform density, rho???????? lies in y-z plane parallel to the zaxis at y=1m. (a) Find the potential VAB at point A (4m, 2m, 4m) in Cartesian coordinates with respect to point B (0,0,0). (b) Find E filed at point B.

1 Answer

3 votes

Answer with Explanation:

We are given that

Density=
\rho l

A(4m,2m,4m) and B(0,0,0)

y=1 m

a. Linear charge density=
(\rho l)/(l)=\rho C/m

Let a point P (0,1,4) on the line of charge and point Q (0,1,0)

Therefore,

Distance AP=
√((4-0)^2+(2-1)^2+(4-4)^2)=√(17)

Distance,BQ=
√((0-0)^2+(1-0)^2+(0-0)^2)=1

Electric field for infinitely long line


E=(\rho)/(2\pi \epsilon_0 r)\cdot \hat{r}

Therefore, potential


V_(BA)=-\int_(a)^(b)E\cdot dl


V_(BA)=-\int_(√(17))^(1)(\rho)/(2\pi \epsilon_0 r)\hat{r}\cdot \hat{r} dr


V_(BA)=-\int_(√(17))^(1)(\rho)/(2\pi \epsilon_0 r)dr


V_(BA)=-(\rho)/(2\pi \epsilon_0)[\ln r]^(1)_(√(17))


V_(BA)=-(\rho)/(2\pi \epsilon_0)(ln 1-ln(√(17))=(\rho)/(2\pi \epsilon_0)(ln(√(17))


V_(BA)=V_B-V_A


V_(AB)=V_A-V_B=-V_(BA)=-(\rho)/(2\pi \epsilon_0)(ln(√(17))

b.Electric field at point B


E=(\rho)/(2\pi \epsilon_0 r)\cdot \hat{r}

Unit vector r=
-\hat{j}

Therefore,


E=(\rho)/(2\pi \epsilon_0 r)\cdot \hat{-j}

User Reygoch
by
7.4k points