Answer:
Expected value or mean =
![E(x) = \mu = 7.42](https://img.qammunity.org/2021/formulas/mathematics/high-school/owpl20l1frawnqaij531z34ylc7bmbjj83.png)
Variance =
![\sigma^2 = 6.283](https://img.qammunity.org/2021/formulas/mathematics/high-school/u8wbanzij7gb056z6nptpz7fszsezivzlg.png)
Standard deviation =
![\sigma = 2.506](https://img.qammunity.org/2021/formulas/mathematics/high-school/ri1bto8l0d4j134y47mwt5nspwn6izdyek.png)
Explanation:
We are given the following information:
x | P(x)
6 | 0.64
8 | 0.14
9 | 0.14
15 | 0.08
The expected value or mean is given by
![E(x) = \mu = x \cdot P(x) \\\\E(x) = \mu = 6 \cdot 0.64 + 8 \cdot 0.14 + 9 \cdot 0.14 + 15 \cdot 0.08 \\\\E(x) = \mu = 7.42](https://img.qammunity.org/2021/formulas/mathematics/high-school/d8kxakbg2ry9u9d9ah2c5otelrkw74ui85.png)
The variance is given by
![\sigma^2 = \sum (x - \mu)^2 \cdot p(x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4vvzrrbxlrzl3ei4kzjyjblua3l9rlrgh7.png)
![\sigma^2 = (6 - 7.42)^2 \cdot 0.64 + (8 - 7.42)^2 \cdot 0.14 + (9 - 7.42)^2 \cdot 0.14 + (15 - 7.42)^2 \cdot 0.08 \\\\\sigma^2 = 1.291 + 0.0471 + 0.349 + 4.596 \\\\\sigma^2 = 6.283](https://img.qammunity.org/2021/formulas/mathematics/high-school/53qdvb9jm5bcfpaxea8scyictm4djazkeh.png)
The standard deviation is given by
![\sigma = √(\sum (x - \mu)^2 \cdot p(x)) \\\\\sigma = √(\sigma^2) \\\\\sigma = √(6.283) \\\\\sigma = 2.506](https://img.qammunity.org/2021/formulas/mathematics/high-school/c1jdvxiokxg1b79t6r0uv4kcemfe1nw0l9.png)
Therefore,
Expected value or mean =
![E(x) = \mu = 7.42](https://img.qammunity.org/2021/formulas/mathematics/high-school/owpl20l1frawnqaij531z34ylc7bmbjj83.png)
Variance =
![\sigma^2 = 6.283](https://img.qammunity.org/2021/formulas/mathematics/high-school/u8wbanzij7gb056z6nptpz7fszsezivzlg.png)
Standard deviation =
![\sigma = 2.506](https://img.qammunity.org/2021/formulas/mathematics/high-school/ri1bto8l0d4j134y47mwt5nspwn6izdyek.png)