Explanation:
The point-slope form of an equation of a line:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ks7lzc9jj3emt3ptrdvrvr0uzhz4c0qyo5.png)
where the slope m is:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6g6za4c720e5154tr4m4qzakkci1x13a8r.png)
We have the points (2, -3) and (-6, -1).
Substitute:
![m=(-1-(-3))/(-6-2)=(2)/(-8)=-(1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7cl0ijkphy8gls051fozrmbsajsljxae9g.png)
![y-(-3)=-(1)/(4)(x-2)\\\\y+3=-(1)/(4)(x-2)\to\text{point-slope form}](https://img.qammunity.org/2021/formulas/mathematics/high-school/qqevs5a0he2xjzpkzmscrpas9dmcti040a.png)
The slope-intercept form of an equation of a line:
![y=mx+b](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yj5waqmoy4i54laybzhhshd88hyo5w5rj5.png)
![y+3=-(1)/(4)(x-2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/3oyuulhoskjjepflblf9rbnpqu9s21y8u3.png)
subtract 3 from both sides
![y=-(1)/(4)x-2(1)/(2)\to\text{slope-intercept form}](https://img.qammunity.org/2021/formulas/mathematics/high-school/lvlubsrzz51yjgn0tremidado8egha4gze.png)
The standard form of an equation of a line:
![Ax+By=C](https://img.qammunity.org/2021/formulas/mathematics/middle-school/eynq0jxfidskbth7tsaqatn6le9nji8qsv.png)
multiply both sides by 4
![4y+12=-(x-2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/v6svqq9qbl6j27is19b7vr4hyjqmald6z9.png)
subtract 12 from both sides
add x to both sides
![x+4y=-10\to\text{standard form}](https://img.qammunity.org/2021/formulas/mathematics/high-school/h7jwz757nbjn3kounsvqcgcmmmsq1ds92s.png)