Answer:
A(t) = 800*[1 - 1/e^(t/100 )]
Explanation:
Suppose A (t) is the amount of salt in the tank at time t.
Thus:
A '(t) = rate of salt inflow - rate of salt outflow
would be:
dA / dt = 2 * 4 - 4 * (A / 400)
dA / dt = (800 - A) / 100
separating variables we are left with:
dA / (800 - A) = dt / 100
We integrate on each side and we have:
- ln | 800 - A | = t / 100 + c
Now, at A (0) = 0, therefore:
- ln | 800 - 0 | = 0/100 + c, we solve for c:
c = - ln | 800 |
we replace:
- ln | 800 - A | = t / 100 - ln | 800 |
ln | 800 - A | = ln | 800 | - t / 100
we apply e
800 - A = 800 - e ^ (t / 100)
800 - A = 800 / e ^ (t / 100)
A = 800 - 800 / e ^ (t / 100)
A = 800 * [1 - 1 / e ^ (t / 100)]
Thus,
A (t) = 800 * [1 - 1 / e ^ (t / 100)]