Answer:
the volume decreases at the rate of 500cm³ in 1 min
Step-by-step explanation:
given
v = 1000cm³, p = 80kPa, Δp/t= 40kPa/min
PV=C
vΔp + pΔv = 0
differentiate with respect to time
v(Δp/t) + p(Δv/t) = 0
(1000cm³)(40kPa/min) + 80kPa(Δv/t) = 0
40000 + 80kPa(Δv/t) = 0
Δv/t = -40000/80
= -500cm³/min
the volume decreases at the rate of 500cm³ in 1 min