Answer:
The 97% upper confidence limit for the proportion of green items is 0.502.
Explanation:
We have to calculate a 97% upper confidence limit for the proportion.
The sample proportion is p=0.294.
![p=X/n=5/17=0.294\\](https://img.qammunity.org/2021/formulas/mathematics/college/nflpo228pne66af56a81nw8p5se3rhjac1.png)
The standard error of the proportion is:
![\sigma_p=\sqrt{(p(1-p))/(n)}=\sqrt{(0.294*0.706)/(17)}\\\\\\ \sigma_p=√(0.01221)=0.11](https://img.qammunity.org/2021/formulas/mathematics/college/wmffehyywl26av97v1cn937m405t7dudhp.png)
The critical z-value for a 97% upper confidence limit is z=1.881.
The margin of error (MOE) can be calculated as:
![MOE=z\cdot \sigma_p=1.881 \cdot 0.11=0.208](https://img.qammunity.org/2021/formulas/mathematics/college/n3j1kdew5w0ysbajnj10yo6tbnty5lmax6.png)
Then, the upper bound is:
![UL=p+z \cdot \sigma_p = 0.294+0.208=0.502](https://img.qammunity.org/2021/formulas/mathematics/college/wkb1aie428rq0zgdt1yo4xjzpjj24eys5c.png)
The 97% upper confidence limit for the proportion of green items is 0.502.