Answer:
x = 36°
Explanation:
Please check the labels in the image attached.
In vertex A, the sum of the angles in the line AB is 180°, so we have:
![x + 90 + mA = 180](https://img.qammunity.org/2021/formulas/mathematics/college/lwlcfauamxuilq3dkk12moat5gmfwctbxe.png)
![mA = 90 - x](https://img.qammunity.org/2021/formulas/mathematics/college/k2nk7myo8fflaomde18950ebsx17qlzzxb.png)
The angle mCHB is a right angle, so the angle mAHB is also a right angle.
Then, using the internal angles of triangle AHB, we have:
![mA + mAHB + mABH = 180](https://img.qammunity.org/2021/formulas/mathematics/college/61erz6ruz1ixbctm5py0w8taif51agznqi.png)
![90 - x + 90 + mABH = 180](https://img.qammunity.org/2021/formulas/mathematics/college/arfxs05d1deags9deqdfn94kpcd2but5qt.png)
![mABH = x](https://img.qammunity.org/2021/formulas/mathematics/college/gle1xqkvkdrq4o4lua20ost2kgt4i7m5kl.png)
Then, in vertex B, we have the sum of angles in the line BC equal to 180°:
![3x + mABH + x = 180](https://img.qammunity.org/2021/formulas/mathematics/college/h0jxhveah2tanuuzhn8ya15tkti8s1nfm1.png)
![3x + x + x = 180](https://img.qammunity.org/2021/formulas/mathematics/college/bfmea7nj91pl7o8mvpgv9rzu9u7u3g93pe.png)
![5x = 180](https://img.qammunity.org/2021/formulas/mathematics/college/b2mlhiryx15j04xb6qvco0m2o4h2f3brex.png)
![x = 180/5 = 36\°](https://img.qammunity.org/2021/formulas/mathematics/college/o4r6vftwjqru4256ncss7xot2zlfaxjywg.png)