46.5k views
4 votes
Simplify radical sign 16a^8b^-2

Simplify radical sign 16a^8b^-2-example-1
User James Lee
by
4.8k points

1 Answer

7 votes

Answer:


\frac{ {4a}^(4) }{b}

solution,


\sqrt{16 {a}^(8) {b}^( - 2) } \\

Use negative power rule:


{x}^( - a) = \frac{1}{ {x}^(a) }


\sqrt{ {16}^(8) * \frac{1}{ {b}^(2) } } \\

Simplify:


\sqrt{ \frac{ {16a}^(8) }{ {b}^(2) } } \\ = \frac{ \sqrt{ {16a}^(8) } }{ \sqrt{ {b}^(2) } } \\

Use this rule:


√(ab) = √(a) . √(b)


\frac{ \sqrt{16. \sqrt{ {a}^(8) } } }{ \sqrt{ {b}^(2) } }

Since, 4*4=16 ,the square root of 16 is 4


\frac{ \sqrt{ {4}^(2) } \sqrt{ {a}^(8) } }{ \sqrt{ {b}^(2) } } \\ = \frac{4 \sqrt{ {a}^(8) } }{ \sqrt{ {b}^(2) } }

Simplify:


\frac{4 \: \sqrt{ {(a}^{4) ^(2) } } }{ \sqrt{ {b}^(2) } } \\ = \frac{4 {a}^(4) }{b}

Hope this helps...

Good luck on your assignment...

User Laurin
by
4.7k points