Answer:
1/16
Explanation:
Here,
Vertex =(3,5)
x= -1, y=6
Simply,eqn of parabola is given by ax^2+bx+c=y
So, coefficient of squared term (x^2) is 'a'
Therefore, we've to find the value of a
Moving on to solution:
a-b+c=6 ___(i) (by putting the given values of x and y in eqn of parabola )
We know that,
Vetex=(-b/2a, ( 4ac-b^2)/4a)
(3,5) = (-b/2a , (4ac-b^2)/4a)
Equating corresponding sides,we get
3= -b/2a
b=-6a___(ii)
Again,
5=(4ac-b^2)/4a
5=(4ac/4a) - (b^2/4a)
5= c- (36a^2/4a) (by putting value of b from eqn ii )
5= c-9a___(iii)
Now,moving back to the first eqn
a+6a+5+9a=6
16a=1
therefore,a=1/16
Hence ,the required value of coefficient of squared term is 1/16.
I tried my best to give clear explanation as much as I know. It's just we've have to find the value of a . For that, you can use any method you find easier.