Answer:
The width is 5m and the length is 10m.
Explanation:
Rectangle:
Has two dimensions: Width(w) and length(l).
It's area is:
![A = w*l](https://img.qammunity.org/2021/formulas/mathematics/college/hbg1jmf2de3pmgairh4ztao3t8bkkjq5py.png)
The length of a rectangle is 5m less than three times the width
This means that
![l = 3w - 5](https://img.qammunity.org/2021/formulas/mathematics/college/p6121o9jnbz57heb1m3duerytm7xvsbs35.png)
The area of the rectangle is 50m^(2)
This means that
. So
![A = w*l](https://img.qammunity.org/2021/formulas/mathematics/college/hbg1jmf2de3pmgairh4ztao3t8bkkjq5py.png)
![50 = w*(3w - 5)](https://img.qammunity.org/2021/formulas/mathematics/college/mvbhpwbs40nqohemasfa1ijv4z3zq6uhme.png)
![3w^(2) - 5w - 50 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/1ke0psaxrn76ikhhjya12mge50wjs7d98r.png)
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
.
This polynomial has roots
such that
, given by the following formulas:
![x_(1) = (-b + √(\bigtriangleup))/(2*a)](https://img.qammunity.org/2021/formulas/mathematics/college/oyav4t50gxwlebnxow0jkg1h1wg0cug5v8.png)
![x_(2) = (-b - √(\bigtriangleup))/(2*a)](https://img.qammunity.org/2021/formulas/mathematics/college/ab43b5ab1q0isg535d913r7c1xw0asolw7.png)
![\bigtriangleup = b^(2) - 4ac](https://img.qammunity.org/2021/formulas/mathematics/college/zirtrp8pc9sd5ixxvxuq5wacoopj7h2hyk.png)
In this question:
![3w^(2) - 5w - 50 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/1ke0psaxrn76ikhhjya12mge50wjs7d98r.png)
So
![a = 3, b = -5, c = -50](https://img.qammunity.org/2021/formulas/mathematics/college/6dg7md0v2r99uf81kh6eaj095uzbtdaah6.png)
![\bigtriangleup = (-5)^(2) - 4*3*(-50) = 625](https://img.qammunity.org/2021/formulas/mathematics/college/8lxmcroy71cpx1ro62aft2d2aanw4qure6.png)
![w_(1) = (-(-5) + √(625))/(2*3) = 5](https://img.qammunity.org/2021/formulas/mathematics/college/1bjlk205fw98rf8ww1n9bl2p14vre38eyr.png)
![w_(2) = (-(-5) - √(625))/(2*3) = -3.33](https://img.qammunity.org/2021/formulas/mathematics/college/8lo7b3n5bpq649mz2jtybhm4esxgfw4i5m.png)
Dimension must be positive result, so
The width is 5m(in meters because the area is in square meters).
Length:
![l = 3w - 5 = 3*5 - 5 = 10](https://img.qammunity.org/2021/formulas/mathematics/college/7math74olq7acalfvkc28vabxui2df07ik.png)
The length is 10 meters