152k views
1 vote
The measure of angle 1 is (10 x + 8) degrees and the measure of angle 3 is (12 x minus 10) degrees. 2 lines intersect to form 4 angles. From top left, clockwise, the angles are 1, 2, 3, 4. What is the measure of angle 2 in degrees?

User Moribvndvs
by
4.4k points

2 Answers

3 votes

Answer:

2 = 82°

Explanation:

User Oleksandra
by
4.7k points
5 votes

Answer:

Measure of angle 2 = 82°

Explanation:

m∠1 = (10 x + 8)°

m∠3 = (12 x - 10)°

2 lines are said to intersect to form 4 angles. And the labelling of the angles was done starting from top left, clockwise: the angles are 1, 2, 3, 4.

Find attached the diagram obtained from the given information.

Vertical angles are angles opposite each other when two lines intersect. As such, they are equal to each other.

Considering our diagram

m∠1 = m∠3

m∠2 = m∠4

Sum of all four angles firmed = 360° (sum of angles at a point)

m∠1 +m∠2 + m∠3 + m∠4 = 360°

m∠1 = m∠3

(10 x + 8)°= (12 x - 10)°

10x-12x = -10-8

-2x = -18

x= 9°

Also m∠2 = m∠4, let each equal to y

(10 x + 8)°+ y + (12 x - 10)° + y = 360

10x + 12x - 10 +8 +2y = 360

Insert value of x

22(9) -2 + 2y = 360

2y = 360-196

2y = 164

y = 82°

m∠2 = m∠4 = y = 82°

Measure of angle 2 = 82°

The measure of angle 1 is (10 x + 8) degrees and the measure of angle 3 is (12 x minus-example-1
User Revanth Kumar
by
5.0k points