Answer:
Area of the sector = 31.42 cm²
Explanation:
Formula for the area of a sector is,
Area =
![(\theta)/(2\pi )(\pi r^(2) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/2samzzme12ff9dv550j4kbvs3do4vpsjse.png)
Here θ = central angle subtended by the arc (in radians)
r = radius of the circle
Now substitute the values given in the formula,
Area of the sector =
![((4\pi )/(5))/(2\pi )* \pi (5)^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/rz75cbfqrjv3b0riw8vr3m6n4pzu7v9ob7.png)
=
![(4\pi )/(10\pi ) * (25\pi)](https://img.qammunity.org/2021/formulas/mathematics/high-school/735z1g3e8i4dgqviototzfxy73uv2pqq0p.png)
=
![(100)/(10)* \pi](https://img.qammunity.org/2021/formulas/mathematics/high-school/tjo2szo169gtewomn6u4ky4omsgspcyu2y.png)
= 10π
= 31.416
≈ 31.42 cm²