Answer:
![slope = (-680)/(9)](https://img.qammunity.org/2021/formulas/mathematics/college/c3koo0688frrrf6zr5n82t6823hs9331mq.png)
Explanation:
We are given coordinates of two points:
Let the points be A and B respectively:
![A((7)/(20), (8)/(3))\\B((3)/(8), (7)/(9))](https://img.qammunity.org/2021/formulas/mathematics/college/7t2w420fghcdrca222rrrjt7kbnnk1pan3.png)
To find the slope of line AB.
Formula for slope of a line passing through two points with coordinates
and
is given as:
![m = (y_2- y_1)/(x_2- x_1)](https://img.qammunity.org/2021/formulas/mathematics/college/2uk9jpg46t6dhbce1vb1nge6ie72b7cnoo.png)
Here, we have:
![x_2 = (3)/(8)\\x_1 = (7)/(20)\\y_2 = (7)/(9)\\y_1 = (8)/(3)\\](https://img.qammunity.org/2021/formulas/mathematics/college/gjgmujuvdb1qa225v5ymh3wi24hf1gke8b.png)
Putting the values in formula:
![m = ((7)/(9)- (8)/(3))/((3)/(8)- (7)/(20))\\\Rightarrow m = ((7-24)/(9))/((15-14)/(40))\\\Rightarrow m = ((-17)/(9))/((1)/(40))\\\Rightarrow m = (-17* 40)/(9)\\\Rightarrow m = (-680)/(9)](https://img.qammunity.org/2021/formulas/mathematics/college/avk80kudk5yuuk9v6f2vzx5apcb4duwjpa.png)
So, the slope of line AB passing through the given coordinates is:
![m = (-680)/(9)](https://img.qammunity.org/2021/formulas/mathematics/college/needzzgvb169j60tbim5jod5a0dr5fsa8a.png)