11.6k views
5 votes
Apply t-test to the following data sets and compare it with the value of u=4. Identify the test and find the critical value and state the conclusion

a) 2 3 4 5 6 7 b) 1 2 2 5 5 7

User BCA
by
4.3k points

1 Answer

3 votes

Answer:

a)0.654

b)-0.34

Explanation:

a)2 3 4 5 6 7


\mu = 4


Mean = \frac{\text{Sum of all observations}}{\text{No. of observations}}\\Mean = (2+3+4+5+6+7)/(6)\\Mean =4.5

Standard deviation
=\sqrt{\frac{\sum(x-\bar{x})^2}{n-1}}

Standard deviation
=\sqrt{((2-4.5)^2+(3-4.5)^2+(4-4.5)^2+(5-4.5)^2+(6-4.5)^2+(7-4.5)^2)/(6-1)}=1.87


t=(x-\mu)/((\sigma)/(√(n)))\\t=(4.5-4)/((1.87)/(√(6)))\\t=0.654

Df = n-1 = 6-1 = 5

Assume α=0.05

So
t_((\alpha,df))=t_(0.05,5)=2.57

So, t critical = 2.57

So, t calculated < t critical

b)1 2 2 5 5 7


\mu = 4 \\Mean = \frac{\text{Sum of all observations}}{\text{No. of observations}}\\Mean = (1+2+2+5+5+7)/(6)\\Mean =3.67

Standard deviation =
\sqrt{\frac{\sum(x-\bar{x})^2}{n-1}}

Standard deviation =
\sqrt{((1-3.67)^2+(2-3.67)^2+(2-3.67)^2+(5-3.67)^2+(5-3.67)^2+(7-3.67)^2)/(6-1)}=2.338


t=(x-\mu)/((\sigma)/(√(n)))t=(3.67-4)/((2.338)/(√(6)))t=-0.34

Df = n-1 = 6-1 = 5

Assume α=0.05

So,
t_((\alpha,df))=t_(0.05,5)=2.57

So, t critical = 2.57

So, t calculated < t critical

User Perspectivus
by
4.2k points