Answer:
B) x = -4t - 1; y = 8t - 1; z = 4t - 1
Explanation:
Explanation:-
Given points are P(-1,-1,-1) and Q(-5,7,3)
Let (x₁ , y₁ , z₁) = P(-1,-1,-1)
Let (x₂ , y₂ , z₂) = Q(-5,7,3)
Parametric equation of the line passing through the points (x₁ , y₁ , z₁) and (x₂ , y₂ , z₂)
![(x-(-1))/(-5-(-1)) = (y -(-1))/(7-(-1)) = (z-(-1))/(3-(-1)) = t](https://img.qammunity.org/2021/formulas/mathematics/high-school/ndahqklok61u3qeqeu8v16j7cw3hgtvijm.png)
![(x-(-1))/(-4) = (y -(-1))/(8) = (z-(-1))/(4) = t](https://img.qammunity.org/2021/formulas/mathematics/high-school/zse4gfehwhyh6op5ihxe934at3wq2y0ij2.png)
Equating each term
![(x+1)/(-4) = t](https://img.qammunity.org/2021/formulas/mathematics/high-school/w8s3ommlogdds1u3c47kwugd1h1shyzeda.png)
⇒ x + 1 = - 4 t
⇒ x = - 4 t -1
y + 1 = 8 t
⇒ y = 8 t - 1
![(Z+1)/(4) =1](https://img.qammunity.org/2021/formulas/mathematics/high-school/ko4a53gi6hegz524u0z0ih4nfq0x5k5prb.png)
⇒ z +1 = 4t
⇒ z = 4t -1
Final answer:-
parametric equations for the line through point P(-1,-1,-1) and Q(-5,7,3)
are
x = -4t - 1; y = 8t - 1; z = 4t - 1