141k views
1 vote
MATH HELP PLZ!!!

Drag the tiles to the correct boxes to complete the pairs.
Match the expressions with their solution

MATH HELP PLZ!!! Drag the tiles to the correct boxes to complete the pairs. Match-example-1
User Visakh
by
5.8k points

1 Answer

0 votes

Answer:

a)
tan (157.5) = (1-cos 315)/(sin315)

b)


sin (165) =\sqrt{ (1-cos (330) )/(2)}

c)


sin^(2) (157.5) = (1-cos (315) )/(2)

d)

cos 330° = 1- 2 sin² (165°)

Explanation:

Step(i):-

By using trigonometry formulas

a)

cos2∝ = 2 cos² ∝-1

cos∝ = 2 cos² ∝/2 -1

1+ cos∝ = 2 cos² ∝/2


cos^(2) ((\alpha )/(2)) = (1+cos\alpha )/(2)

b)

cos2∝ = 1- 2 sin² ∝

cos∝ = 1- 2 sin² ∝/2


sin^(2) ((\alpha )/(2)) = (1-cos\alpha )/(2)

Step(i):-

Given


tan\alpha = (sin\alpha )/(cos\alpha )

we know that trigonometry formulas


sin\alpha = 2sin((\alpha )/(2) )cos((\alpha )/(2) )

1- cos∝ = 2 sin² ∝/2

Given


tan((\alpha )/(2) ) = (sin((\alpha )/(2) ))/(cos((\alpha )/(2)) )

put ∝ = 315


tan((315)/(2) ) = (sin((315 )/(2) ))/(cos((315 )/(2)) )

multiply with ' 2 sin (∝/2) both numerator and denominator


tan ((315)/(2) )= (2sin^(2)((315))/(2) )/(2sin((315)/(2) cos((315)/(2)) )

Apply formulas


sin\alpha = 2sin((\alpha )/(2) )cos((\alpha )/(2) )

1- cos∝ = 2 sin² ∝/2

now we get


tan (157.5) = (1-cos 315)/(sin315)

b)


sin^(2) ((\alpha )/(2)) = (1-cos\alpha )/(2)

put ∝ = 330° above formula


sin^(2) ((330 )/(2)) = (1-cos (330) )/(2)


sin^(2) (165) = (1-cos (330) )/(2)


sin (165) =\sqrt{ (1-cos (330) )/(2)}

c )


sin^(2) ((\alpha )/(2)) = (1-cos\alpha )/(2)

put ∝ = 315° above formula


sin^(2) ((315 )/(2)) = (1-cos (315) )/(2)


sin^(2) (157.5) = (1-cos (315) )/(2)

d)

cos∝ = 1- 2 sin² ∝/2

put ∝ = 330°


cos 330 = 1 - 2sin^(2) ((330)/(2) )

cos 330° = 1- 2 sin² (165°)

User SolarX
by
5.3k points